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Theoretical Analysis on Flow 
of Polymer Melts in Screw Die 

MASAHIKO ISHIDAT and KATSUHIKO ITO: 
College of Engineering, Hosei University 
Kajinocho, Koganei, Tokyo, Japan 

Flow of polymer melt in screw dies is theoretically analyzed by the broken section method 
with the uniformity of the extrudates. An isothermal, laminar and steady state power law 
fluid is assumed. The analysis is discussed in two parts, i.e., screw flow and die slit flow. A 
way of computer calculation by means of a method of iteration is presented by considering 
volume balance between screw flow and slit flow. 

An ideal screw die is one in which pressure distribution is constant along the screw axis, 
i.e., the shape of the die slit is constant along the axis and the screw is such that the depth 
of screw channel decreases almost linearly. 

I NTRO D U CTlO N 

Theoretical analyses on die design of plastic sheets and films have been 
attempted by Carley,l Weeks,2 Pearson,3#4 McKelvey and It05 and 
other researchers. This paper presents an analysis on the flow of a power law 
fluid with a flow index n (( I )  in a screw die,6*7,**9 Figure 1, by broken section 
method, and describes a computational procedure for uniformalizing the 
thickness of the extrudate. 

The screw die consists of a die slit and a die screw inserted in a die manifold 
connected to an extruder, in alignment with the axis of the extruder screw. 
As shown in Figure 2, molten polymer from the extruder flows through the 
entrance of the screw die, h = 0, into the die, where it is divided into two 
parts; one is forcibly dragged and conveyed toward the front end of the 
screw axis, or the h axis, by the rotation of the die screw. Simultaneously the 
other is extruded by the fluid pressure toward the die lips located at right 
angles to the h axis. 

tPresent address: Plastic Processing R & D Department, lkegai Iron Works, Sakado, 

:To whom all correspondence should be mailed. 
Takatsu-ku, Kawsaki, Japan, 
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86 M. ISHIDA AND K .  IT0 

Choke bar adjusting bclt 

Upper lip clamping bolt 

\ Die screw 

m Lip adjusting bolt , 
Dio head 

Die screw drive 1 bearing housing 

FIGURE 1 Constwction of screw die. 

I n  order to analyze the uniformity of the sheet/film, a die screw with a die 
slit having a geometry varying along the h axis is broken into M equal sections 
in parallel with the flow direction of the extrudate. 

For simplifying the analysis, the following assumptions are made: molten 
polymer is an incompressible power law fluid; the flow is steady, laminar and 
isothermal; there occurs no slipping at the wall; further the interaction 
between both screw and slit flows can be neglected as well as the various 
entry effects. 

FLOW IN DIE SCREW 

As shown in Figure 2, polymer melt at a volumetric flow rate Qo enters the die 
at x = 0 under hydrostatic pressure Po and flows in the h direction. Simul- 
taneously, there is a slit flow through the die slit perpendicular to the X axis. 

The analysis is made on the assumption that the screw channels which are 
sufficiently smaller than the screw radius are approximately represented by 
parallel-plate models. The coordinates are; the cross channel direction is on 
the x axis, the channel height direction on the y axis, and the down channel 
direction on the z axis. 
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88 M. ISHJDA AND K .  IT0  

The complicated flow of power law fluid in screw channels is analyzed in 
the following four approaches : 

1 Modified non- Newtonian flow in rectangular channel 

Refer to Figure 3, if the Newtonian viscosity is replaced with an average non- 
Newtonian viscosity in order to extend the well-known Newtonian fluid 
formulas10711 to  the expressions on non-Newtonian screw characteristics, 
the following equation of volumetric flow rate is obtained':!: 

I In 

(1) 

Screw Surtace \ 
FIGURE 3 An idealized rectangular cross-section of a screw channel 
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FLOW OF POLYMER MELTS IN SCREW DIE 

where 

89 

g n  w F p = l - -  192H f (i)' . tanh (%-) 
n5 g= I, 3.5,. . . 

and N is the frequency of screw rotation, (AP/Ah) is the pressure gradient in 
the screw axial direction, 71' is the apparent non-Newtonian viscosity at shear 
rate yo in the standard state, D is the diameter of the manifold, H i s  the depth 
of the channel, W is the width of the channel, e is the flight width, C is the 
flight clearance, 6 is the helix angle of the screw and m is the number of 
channels arranged in  parallel. And the sign of the second term at the right 
hand side is positive when (AP/Ah)  < 0 or negative when (APjAA) > 0. 

The total power HT required for driving the screw is equal to the sum of 
the power required to convey polymer melt and the power that is consumed 
in the screw clearance. The power requirement for a Newtonian fluid13 is 
extended to the non-Newtonian fluid. When the width of the channel is 
constant along the down-channel direction, the power equation for the non- 
Newtonian fluid can be expressedl4915: 

where 

2 c  
I + 3 s i n 2 6 + -  

D .rrD*sin 6 
2 c  I n2D2 H sin 6 . ~ 0 s  8 

2 
5 =1 

and t is a coefficient for conversion of torque into horse-power. 
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90 M. ISHIDA AND K. IT0 

2 Modified nowNewtonian flow in a rectangular channel 
having rounded corners on both sides 

As shown in Figure 4, the flow of a modified non-Newtonian fluid in a channel 
is analyzed i n  two flow regions, a channel with a rounded corner (I] and 
one with a rectangular part 0. The flows are assumed to occur only in 
one direction z ,  and the flow velocities through the channel parts 0 and (2) 
are expressed as zizI and eZ2, respectively. 

In the case of a Newtonian fluid, its equation of motion and boundary 
conditions are as follows: 

The boundary conditions are: 

I n  the channel part 0 (0 I x < H )  
-__- 

v,I (x, 0)  = V,, u , I  (x, d H 2  - x 2 )  = 

In  the channel part p, 

0,  

,u ,~(x ,  0)  = V,, o , ~ ( x ,  H )  = 0,  

And, from the continuity of flow in the boundary 

- , y  = o  " >  2 

(4) 

. (B.C.) 

The principle of superposition is applied for solving Eq. (4) with (B.C.) and 
the total volumetric flow rate is expressed as the sum of the drag flow rate 
and pressure flow rate: 

The equation of motion on the pure drag flow is 
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FLOW OF POLYMER MELTS IN SCREW DIE 91 

Y 

X 

FIGURE 4 
channel, 0 a rectangular channel. 

A rectangular channel having rounded corners; (3 aIrounded corner 

Solving this equation with (B.C.), the following equation is derived from the 
drag flow rate through the screw having m flights in parallel : 

H 0 . ___ 
\ H L  yL 

a, = 2m([]?? , lnxd i  +l j ; : Z d Y ) / N  

where a,, is a geometric factor represented by W and H. 
For the pure pressure flow, the equation of motion, Eq. (4), can be solved 

with the completely same boundary conditions as (B.C.) except V ,  == 0. The 
geometric factor Igc can be derived from the pure pressure flow rate through 
the screw having m flights in parallel, provided that  correction is made for 
the leakage flow in the flight c1earancel6: 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



92 M. ISHIDA AND K .  IT0 

In the same manner as with the rectangular flow channel [l], the volumetric 
flow rate extended for the modified non-Newtonian fluid is obtained: 

where the sign in the second term on the right hand side is positive when 
(AP/Ah)  < 0 and is negative when ( A P / A h )  > 0 

The power is obtained for the non-Newtonian fluid in the same manner 
as [l]: 

- - 
H P  
t sin 6 

where 

3 Power law flow between shallow parallel plates 

Assuming the power law fluid, the following equation of motion on the flow 
between shallow parallel plates is obtained : 

* * 

where 

and the sign on the right hand side is positive when ( b P / b z )  > 0 and negative 

when (bP/az) < 0. The boundary conditions are Q,(O) = 0, and Qz( 1) == I /  1'. 
* * 
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FLOW OF POLYMER MELTS IN SCREW DIE 

First, when (bP/3z) = 0, the volumetric flow rate can be easily obtained: 

93 

Q = uN.  (9 )  

where u is given by Eq. (2). 

shown in Figures 5a-d. 
In the presence of (3P/3z),  the four velocity profiles are considered, as 

In the case of Figure 5a, the volumetric flow rate can be expressed as1' : 

* * 

FIGURE 5 Types of velocity profiles in flow between parallel plates; when (hP/hz)  -, 0, 
a, b and when (3P/3z)  < 0, c, d. 
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94 M. ISHlDA AND K .  IT0 

where kl is an integral constant given by: 

(kl)'" 1 I ) / r ,  .~ (/{, + 1)P 1 I ) / n  + (!!I) i7 -0; k , > O  

The correction on the flight clearance must be made in consideration of the 
leakage flow. In the solution i t  is not justified mathematically and physically 
to divide the volumetric flow rate into drag and pressure flow rates. However, 
assuming that the total flow rate minus the drag flow rate equals the pressure 
flow rate, it is possible to modify the drag and pressure flow rates with cor- 
rection factors16 and extend to the screw having m flights in parallel. Then 
the above equation is written as: 

& = d " P n  
where 

fl == ~ rr2D2HN sin 8 . ~ 0 ~  8 

(10) 

- 2 ' I  
x l - - - -  2c em ){I + (33(3 (---)'}F'.. 1 ( D rrD sin 8 sin 0 .  cos 8 

I n  the cases of Figures 5b-d,18 the flow rates are written with the pa in 
Eq. (10) replaced by ph ,  p, and Pd,  respectively: 

2c X I  ( D nD sin 8 

where 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



FLOW OF POLYMER MELTS IN SCREW DIE 

2c 
em ){I + ( ~ H ) ~ ( / ) ( P - ) ~ } F ~  1 ( ' - 7 - ? i D 7 8  sin 0,cos 8 

where the integral constant k6 is determined as 

where 

( ; s ) o l  I ) / N  - ( 1  - j q n  i I)/,? - 

- 
The power H? is derived in the same way as [l] and [2]. 

In the case (3P/3X) is zero: 
- - 
H P  

- - __ 
t sin 8 

(Eqrta[ion I1 continued overleaJ) 
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In  the case of Figure 5b: 

In the case of Figure 5c:  

In the case of Figure 5d: 
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FLOW OF POLYMER MELTS IN SCREW DIE 97 

4 Power law flow between shallow parallel plates including 

Considering a flow in  a channel where W >  H and assuming that the two 
velocity components, ti, and v2, are functions of y alone, the following equa- 
tions with the effect of transverse flow are obtainedlg: 

the effect of transverse f low 

Assuming G,, d and n and estimating G,, y6 and y7 i n  Eq. (12), it is possible 
to have approximate numerical solutions for the velocity components v, 
and v, by Runge-Kutta integrations.lg The effects of flight, the leakage 
flow in the flight clearance and the screw having m flights in parallel are 
considered in  the same manner as the previous chapter: 

Q = " +  p G  (13) 
- 

where I g G  E r 2 D 2 H N  sin 8 . ~ 0 s  d 

1 
em )(I + (g)3(3 (sin 6.cos S ) ' } F ~  ( I  - D - 

2 c  

and Fz is the average flow rate, which is 
1 - 

Y ,  n~~ I,;J; 
The power is: 

HP 
- - 

n--112 r rmqojo D W .  AX. N 
- - - 

t sin 0 

sin 0 dvgl ' O S  d a z l  + T(E)(;)} (14) 
wc - +y-  dv 1 , - H  y dY I*=H 

G 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



98 M. ISHIDA AND K. I T 0  

FLOW IN DIE SLIT 

Polymer melt enters the die at X = 0 and flows in the h direction. Simulta- 
neously, it flows through the die slit perpendicular to the X axis. The flow in 
a slit can be regarded as a one dimensional flow between parallel plates 
because the pressure along the h axis is nearly constant, the pressure gradient 
in the die screw is much smaller than that in the slit, and the depth of a slit 
sufficiently smaller than the width. 

The total width of the die is A. The die is broken into M equal sections, 
each of width S, where 

S = A I M .  

Each section is further broken into J parts. Thus, the slit channel of con- 
tinuously varying depth can be approximated. 

The volumetric flow rate Qi  in the ith section of a die slit can be easily 
obtained 

where pi = PJP,,, Pi is the pressure at the exit of the ith section, 4 is a 
dimensionless variable representing the flow characteristic of the melt, which 
is defined5 as 

I In 

4 = ( + )  
Also, Ki represents the mobility of the melt in the die slit, and l / K i  is a 
variable representing the resistance of the die slit and expressed as 

I In 

where A j  may be given, in parallel plates having a depth /j and length Lj,  by 

and, for two sets of parallel plates, both sides tapered and either side tapered, 
having an entrance depth f j ,  exit depth Ti, and length L j ,  the following ex- 
pressions apply respectively : 
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DETERMINATION OF REDUCED PRESSURE 

99 

The volume balance of the polymer melt in  the ith section is now considered. 
The melt flows into the die screw in  the direction of the X axis a t  a volumetric 
flow rate q, ~I and flows out of the section at a volumetric flow rate q i ,  while, 
at the same time, flowing toward the die lip at a volumetric flow rate Qi 
(Figure 2). The polymer melt flow in the direction of manifold axis mostly 
depends upon the drag force of the die screw in the screw die, while it only 
depends upon pressure difference in manifold die. Pressure in screw die is 
almost constant along the X axis. Hence the flow in  the die slit can be re- 
garded as one in the die-lip direction perpendicular to the manifold. Thus, 
on the assumption that the interaction at the boundary between the screw and 
the slit can be neglected as well as various entry effects in the die slit,5 the 
following equation is obtained : 

Further, from the volume balance of the polymer melt in the process of flow, 
we get 

M 

Taking the volume balance with the volumetric flow rate along the screw in 
the ith seclion into account, and using the above equation, we obtain 

M 

(21) 
I (  h - i i  1 

I 
2(4,-1 + q, )  = 2 Q ,  + 2 1 Q,> = 6, 

where Q i  is the average volumetric flow rate through the ith section of the 
screw. 

Since Po is given and both the rheological properties of the molten polymer 
and the die dimensions are known, the unknown quantities are p,’s and Q,’s 
i n  the 1st to Mth, and q,’s in the 0th to (M-1)th. Thus, there are 3M un- 
known quantities. Because 3M independent equations can be generated from 
Eqs. (15), (20) and (21), this problem can be solved. 

Introducing Eq. ( 1  5) into Eq. (21) yields 

Eq. (22) contains M unknown pi’s. However, a total of M simultaneous 
equations are obtained from Eq. (22) and M reduced pressures pi’s are 
determined with the consequence that all of the problems concerning the 
screw die can be completely solved. 
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I00 M. ISI-IIDA AND K .  IT0 

U NI FOR MlTY 

The overall volumetric flow rate Qo is equal to the sum of the volumetric 
flow rates Qi ’s  in all of the die sections: 

M 

PO = C Pi .  
i =  I 

If n and T O  are constant in those sections, Qo is introduced from Eq. (15): 
M 1 I n  

i= 1 

Q ~ = ~ c K ; (  P i - i  + P i  ) (23) 

The relative deviation Ai from the average value may be expressed, from the 
Eqs. ( 1  5) and (23), as 

In order to indicate the uniformity in thickness of the sheet extruded using 
hi values, a total of M uniformity values in the die sections must be arranged 
in parallel. For a comparison of the uniformity values, however, it is con- 
venient to use a quantity which may be represented by a single numeral. For 
this purpose the standard deviation is obtained from the Ai values to define a 
uniformity function U5 as 

Eq. (24) indicates that hi, and hence U ,  depends upon the geometrical con- 
figuration of the screw die and n. In practice, i t  is desired for the designing of 
an extrusion die, that U be kept at a high value with as little effect of n as 
possible. Then, the average uniformity 0 independent of n is defined as 

I 

i7 = Jo U dn. 

FOR COMPUTER ANALYSIS 

The analysis of flow behavior of polymer melt in the screw die is accomplished 
by calculating the flow for each section by use of Eq. (22). Given the screw 
die dimensions and Po, and knowing the flow characteristics of molten 
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FLOW OF POLYMER MELTS IN SCREW DIE 101 

polymer, i.e., T O ,  3" and n, then A,, Ki and 4 can be calculated and only the 
reduced pressure pi (i = 1, 2, . . . , M) is left unknown. However, by the help 
of M equations imposed by Eq. (22)  the values of pi's can be determined. 

The Flow equations and the power equations derived in [l] to [4] can be 
transformed into the forms used in broken section method, by the following 
replacement : 

"Q is replaced by $;. 

"z is replaced by H T ; .  

"Pressure gradient IAP/Ahl is replaced by P o l p i P l  - p i l /S .  

Since the total width A of die lip is broken into M equal sections, hi is written 
as 

- - 

hi = ,(i - :) = A (2 i  - 1) /2M.  

In the case of [l] for example, Eq. (1) with H i  =f(h;) is transformed to the 
following form 

where 

Introducing any of the transformed expressions for the case [l] to [4] into 
Eq. (22), we can obtain the pi for each section, i.e., the pressure distribution 
along the X axis. For example, introduction of Eq. (26)  into the right hand 
side of Eq. (22)  yields the following expression for pi: 

1 n +  1 I - "  
- K k r * A ) l ' n } p ( y )  ] (27)  

k = i  t I Pi," 
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I02 M. ISHIDA AND K .  IT0 

where the sign of the second term in the right hand side is taken positive if 
pi . - I  - p;  > 0 and n = I ,  and negative if pi I ~ pi  < 0. 

These equations are solved by the method of iteration and the pi is ob- 
tained. In this method, assume an initial set pi (" ) ,  and introduce these into 
the equations under consideration, Eq. (27) for example, and thereby obtain 
a second set Further introduce this p i ( ' )  into the equation just employed 
and obtain new pressure distribution pi(* ) .  Continue this process until  the 
deviation between successive sets is less than some arbitrary specified amount 
E, i.e., /p i (" )  - pi('' - ' ) I  < E. When this condition is realized, the iteration 
is regarded as convergent, and pi('#) is considered to represent well the solution 
of the equation. The specified value of c is recommended to choose about two 
orders smaller than the required accuracy. The method of iteration is particu- 
larly effective in solving the equations such as Eq. (27), but i t  may have a 
demerit deficiency in that the procedure sometimes fails to converge. There- 
fore, it is necessary to set an upper limit of iteration number, and stop the 
calculation if the solution does not converge after iteration up to this number. 
The success i n  the method of iteration depends mainly on the choice of the 
initial value. 

Practical methods for improving the uniformity of extrudate are described 
in  the following: 

(i) Ideal screw die The ideal operating conditions and geometric parameters 
of the screw die are such that the pressure distribution along the X axis is 
uniform, i.e.,p, = pa = I ,  and the shape of the die slit is constant, i.e., K ,  = 

KO = constant. Eq. ( 2 2 )  can be reduced to a simpler form if the flow 
characteristics of polymer melt are known: 

The above equation gives, 

and it is seen that the depth of the screw channel decreases almost linearly 
with the A axis. 

(i i)  Screw die shape of'high unijormity Given all of the die dimensions and 
the flow behavior of the polymer melt, pi  is obtained from Eq. ( 2 2 ) ,  and A; and 
U can be calculated. If the value of U obtained is not appropriate, the 
dimensions of the die slit or the die ssrew must be changed to improve the U 
so that U exceeds the desired value 'U. 
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FLOW OF POLYMER MELTS IN SCREW DIE 

(ii) I :  Method for improving the dimensions of die slit5 

103 

Calculate K;(')  by introducing Ki(0) and p i (o ) ,  which have been established 
from the dimensions of the die in section (i), into the above equation. Next, 
introduce Ki( ' )  into Eq. (22) to obtain ne\?: pi ( ' ) .  Repeating this process 
successively until a value of U larger than U is obtained. In this case it is 
desirable that the values of pi(') from Eq. (22) are determined as indepen- 
dently on N as possible. 

(i i)  2: Method for improving dimension of die screw 

'I From hi = 0 
P i -  I + Pi 

M K; 
Pi- I + P i  1=  I 

Calculate pi ( ' )  by introducing p i  (O) which have been calculated from the die 
dimensions given in section (i), into the above equation.*In the same way 
described above, calculation is repeated until U exceeds U .  Introducing the 
final values of pi(') into Eq. (22), we can determine the screw dimension as 
independently on N as possible. 

DISCUSSION 

A method with which the geometrical parameters of dies are to be improved 
and a method of computer analysis by means of iteration procedures was 
described paying attention to the uniformity of flow from a screw die. 

The key point of the simulation in this analysis is dependent on the setting 
of initial values. Moreover, influence of frequency of screw rotation and flow 
index are also significant. 

The most ideal shape of a screw die is that with p i  = 1, and with uniform 
shape of the die lip along the h axis and the depth of screw channel decreases 
almost linearly apart from the die inlet. 

Though the interactions between the screw flow and the slit flow was 
assumed to be neglected, in actual cases, there exists a pressure difference 
also along the direction parallel to the h axis in the die slit. This phenomenon 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



I04 M. ISHIDA AND K. IT0 

is particularly remarkable at the vicinity of the die inlet, hence it is desirable 
to analyze the flow two-dimensionally.20 

The variable Ki is determined by both the shape of slit and the flow 
characteristics of the molten polymer but the Ki becomes dependent only on 
the shape of the slit if the flow characteristics are assumed to remain constant 
in all sections. The flow of polymer melt in the slit of which depth varies 
continuously along the flow direction of extrudate can be analyzed by taking 
an infinitesimal length of the parallel-plate channel. By increasing the number 
of plate channels, the model approaches an actual die and the accuracy of 
analysis is improved. 

Pressure loss generated between the manifold and the die slit and between 
different depth slit channels can be neglected, since the velocity of polymer is 
slow and the depth difference is small. 

A constant depth is preferable for die lips along the outlet, because of die 
swell. And the land length is to be adjusted so that the maximum shear stress 
at the wall is kept under the critical stress above which melt fracture occurs. 

As is the case in extruder screws, both corners of the die screw channels 
are rounded for preventing degradation of polymer. The corner radius in the 
die screw is larger than that of extruders. The effect of the rounded corner 
may be neglected if the corner is sufficiently smaller than the channel depth, 
but if the depth is small enough as in the vicinity of the drive side, the effect 
of the corner on the flow seems to be quite large. Not only flow in the down 
channel direction but also a transverse flow should be considered, since 
polymer melt flows in a channel in a helical fashion. Further, molten polymer 
exhibits very complicated interactions between drag and pressure flows with 
non-Newtonian behavior and so i t  is not desirable that the flow equation 
derived for a Newtonian fluid is modified for a power law fluid. 

While the flow equations derived in [l] to [4] are known to yield good 
approximation, hence, much better results are obtained by following 
analysis. 

A power law fluid is assumed to flow i n  a rectangular channel with rounded 
corners on both sides, and the influence of transverse flow is considered. The 
coordinate axes are shown in Figure 4. The equations of motion are reduced 
to the form: 

where 
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FLOW OF POLYMER MELTS IN SCREW DIE 105 

The boundary conditions are: 

i n O ( x <  H, 

at y = 0; vzl = V,, v , ~  = ~ V ,  

at y = d ~ ’  - ~ 2 ;  v , ~  = vZ1 = o 

W 
i n H - -  < x < O ,  

2 -  

at J) = 0 :  vz2 = V,, ~ . , 2  = - V,  

at y = H ;  vx2 = uz2 = 0 

and __ 
H t HZ-yZ H O  i, I, V.,ldXdY - I, ~ ~ 2 d ~ d y  = 0. 

H ~ w/2 

The velocity profile is obtained by numerical analysis of these equations. 
Among the various flows the better results are when the equation above 

mathematically perfect can be solved, however, the equation derived in [ I ]  is 
convenient as its easiness. 

In the case of the die screw, most of the flow arises from the drag by the 
screw, and the pressure flow rather compensates the uniformity of the flow, 
and its contribution is relatively small compared to that of the drag flow. 
Therefore, since a curvature correction21 for the pressure flow is negligibly 
small, we can adopt the simple correction factor only for a pure drag 

The analysis has been carried out by assuming an isothermal flow, but an 
actual flow of molten polymers contains temperature gradients as a result of 
wall temperature and viscous dissipation, and such temperature gradient 
influences the flow strongly. Consequently the energy balance should be 
analyzed in considering with the temperature dependence of viscosity, viscous 
heating and wall temperature. 

It has been assumed that the flow index n is constant at all points in the die, 
but n is a function of shear rate. Since the influence of n on flow is rather 
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106 M. ISHIDA AND K .  IT0 

strong, it is desirable to take account of the variation with shear rate. A 
power law fluid, however, has characteristic that the flow pattern at low shear 
rate deviates from the true flow behavior. Therefore, n should be taken as 
half of that at the wall shear rate, since the high viscosity at low shear rate 
must be avoided. 

I f  N is low, the conveying force also decreases and P I  drops. For compen- 
sating the conveying force, therefore, Ki has to be largely increased as the 
fluid flows apart from the die inlet. As N increases, the pressure distribution 
approaches its ideal value pi = 1,  and Ki is a constant value in each section. 
When N further increases, the conveying force becomes excessive, p ,  increases 
and so K ,  is to be small as the fluid flows apart from the die inlet. 

The accuracy of analysis is improved as the number of sections, M, 
increases and the accuracy becomes worse as a result of calculation errors if 
M exceeds a critical value. In practice, M = 50 would yield fairly good 
results and M = 100 would be sufficient. 
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Nomenclature 
A 1 geometric parameter for the slit flow [cni'/sec] 
C = flight clearance [cml 
D = inside diameter of manifold [cm] 
c = width of die screw flight [cni] 
Fo and F,, 
C : reduced pressure gradient [-] 
H ~ distance from the root of die screw to the manifold surface [cni] 
I : depth of die slit [cm] 
I 7 number of parts [-I 
K = geometric parameter for the slit flow [cni~/sec] 
L ~ length of die slit [cni] 
A4 = number of sections [-I 
m = number of die screw channels in parallel [-I 
N ~ frequency of die screw rotation [revolution/sec] 
n : flow index (< 1 )  [-I 
P 2 pressure [kg/cni2] 
p = reduced pressure [-] 
0 
6 
q 
S 
Ll 7 flow uniformity [-I 
u = velocity [cni/sec] 
W 
.Y, .v and z = Cartesian coordinates [cni] 
a 
/j 
f 
yo 
A 
'1' 
H = helix angle [radian] 
A 
A 
!L 4- 2 pressure parameter [-I 
H P  power [PSI 

shape factors for the drag flow and the pressure [-] 

7 volumetric flow rate [cm3/secl 
= volumetric flow rate i n  die screw channel [cni3/secl 
= die screw volumetric flow rate from a section [cm3/sec] 
: width of a section [ m ]  

~ width of die screw channel [mi] 

: shape parameter for the drag flo% [ c d ]  
= shape parameter for the pressure flow [cni4] 

~ reduced pressure gradient [-] 
: shear rate in the standard state [l/sec] 
: relative flow deviation [-I 
= non-Newtonian apparent viscosity in the standard state [kg.src/cm~] 

~ total width of die in A direction [cm] 
~ coordinate in the die screw axial direction [cm] 
~: Newtonian apparent viscosity [kg.sec/cm~] 

I07 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1


